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ABSTRACT
SIMULATION OF STRUCTURALBENDING MODES OF LARGE AIRCRAFT
By Aaron R. Munger
Large aircraft may possess slow structural modes that can affect handling qualities

if excited. Little has been done to simulate these structural modes during pilot-in-the-
loop analyses. A fast and simple method to simulate the longitudinal structural modes of
large aircraft has been developed. A shape function for fuselage was obtained from a
finite element model. This deflection function was used to develop transfer functions for
flight simulation. The transfer functions were developed in a method similar to that used
at NASA Dryden Flight Research Center. Flight simulations were developed to explore
the effects of the structural modes on handling qualities of the aircraft in question. These
calculations were validated by correlating wind tunnel data with simulation predicted

data.
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CHAPTER 1
INTRODUCTION

Background

The strength and flexibility characteristics of large. modern aircraft structures
often produce structural modes of vibration that are of the same order of magnitude as the
bare airframe short-period response“ The first bending mode of the structure may in this
case have an effect on the handling qualities of the aircraft and should considered in a
piloted simulation of the vehicle. Currently, piloted simulations do not include structural
modes. most of which are highly dependent on configuration. MIL-STD 1797 Flying
Qualities of Piloted Aircraft' does not provide metrics for the handling quality related
structural modes of an aircraft.

Variable Definitions

In this investigation, a large aircraft (see Figure 1) 1s considered a combination of
a tuselage (including the tail) and rnight and
lett wings. The wings and tail provide
excitation inputs to the flexible fuselage.
which s dllowed to bend as viewed trom
the side but not allowed any degrees of

freedom in twist.

The aircraft is free to pitch about its

Figure 1. Large Aircraft in Flight.

center of gravity. and the center of gravity

1s allowed to shift slightly along the longitudinal axis. When the airplane 1s disturbed
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from its equilibrium state. the resulting motion in the longitudinal plane may be
considered the sum of the motion due to the nonlinear equations of motion plus the linear
vibration oscillation.

When considering the bending modes due to aeroelastic effects of large aircraft a
few system parameters must be defined in order to provide a clear understanding of the
problem. At any instant during flight a flexible aircraft fuselage can take on the shape

similar the one shown in Figure 2. The dark blue line represents the deformed shape of

+Z
Nose
= Tail
5
=
=
2
2
S
'f:; Node Node
= ¥ ™\ I
Z >
Antinode

Normalized Fuselage Location

Figure 2. Coordinate Systems for a Deflected Aircraft Fuselage
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the fuselage during flight. The mode shape is defined as the deformed shape which the
fuselage of a flexible aircraft takes on during flight. The horizontal axis is the normalized
fuselage position. The normalized fuselage position is used to determine the placement
of items such as accelerometers and gyros along the longitudinal axis of the aircraft.
Normalized fuselage position is obtained by taking the’horizontal reference system and
dividing all values by the overall fuselage length. Normalized deflection of the fuselage
is shown on the vertical axis of Figure 2. Normalized deflection is defined as the amount
which the fuselage deflects from a given reference system. The deflections are
normalized by determining the maximum deflection (usually at the nose of the aircraft)
and then dividing the deflection distribution by this parameter. Figure 2 also shows the
two nodes of the first bending mode. A node is a point of zero displacement and is
represented by the points where the deflected fuselage (the dark blue line) crosses the
horizontal axis. Nodes are points along the fuselage which experience no transnational
motion only rotational motion. An aircraft can have any number of nodes depending on
the mode of vibration which is being excited. The first bending mode of the aircraft is
shown here in Figure 2. The first bending mode is observed when the mode shape of the
fusclage has two distinct nodes as shown in Figure 2. The second bending mode 1s
observed when three distinct nodes are present along the fuselage. The node and bending
mode relationship can continue to infinity governed by the following equation:

Bending Mode = Total Number of Nodes -1




